# TRILOGY

**INTENDED USE** 

GLDH method

**GENERALITIES** 

tract.

#### Trilogy Biotechnology LLC

225 Madinah St., 305 Commercial Complex, Amman, Jordan Post code 11954 Tel: +962 79 8599872. Email: info@trilogybiotech.com Website: www.trilogvbiotech.com

Quantitative determination of urea in Serum, Plasma or Urine. UV

Urea is the chief end product of protein metabolism in the body. The

importance of the urea concentration in blood lies in its value as an

indicator of kidney function. Azotemia (an abnormal increase in

plasma urea level) is seen mainly in renal disorders, dehydration,

increase protein catabolism, high-protein diets, or gastrointestinal

hemorrhage. There are two types of azotemia. The first, prerenal

azotemia, is caused by impaired perfusion of the Kidneys due to

decreased cardiac output or for any of the former causes. The second,

postrenal azotemia, is caused by an obstruction in the urine outflow

such as nephrolithiasis, prostatism, and tumors of the genitourinary

The clinical significance of the urea level in plasma is usually

determined in conjugation with the plasma creatinine level. In

prerenal azotemia, an increase in the plasma urea level is usually

associated with a normal plasma creatinine level, whereas in

postrenal azotemia, there is an increase in both the urea and the

plasma creatinine levels. A decrease in the urea plasma level may be associated with acute dehydration, malnutrition, and pregnancy.

The urease hydrolyzes urea in sample to release ammonium ions, which react with 2-oxoglutarate and NADH in presence of glutamate

dehydrogenase to form glutamate and NAD+. The decrease of

#### UREA

## Quantitative Determination of UREA Enzymatic UV GLDH Method

For professional in vitro diagnostic use only.

Working Solution preparation: Mix 4 parts of Reagent 1 with 1 part of Reagent 2. Leave the working reagent for at least 30 min. Stability: 4 weeks at 2 to 8°C, 5 days at 15 to 25°C.

#### SAMPLE COLLECTION AND PREPARATION

Serum or plasma, free of hemolysis and fresh urine. Other anticoagulants (ammonium heparin or double oxalate of potassium and ammonium) must not be used.

Freeze for longer storage 3 months at -20°C.

Collect a 24-hour urine specimen into a plastic bottle free of preservatives, dilute urine 1:50 with distilled water. Keep the sample refrigerated to minimize urea hydrolysis by microorganisms or other

-20 ° C Discard contaminated specimens.

Stability: urea in serum, plasma or urine is stable 7 days at 2-8°C.

# agents.

Stability in urine: 2 days at 20 - 25°C; 7 days at 4 - 8°C; 1 month at

#### **TEST PROCEDURE**

Wavelength : 340 nm Light path :1 cm :37°C Temperature

Measurement: : against Reagent Blank

Assay type : Fixed Time

Assay:

|                         | Blank   | Assay   |
|-------------------------|---------|---------|
| <b>Working Solution</b> | 1000 μL | 1000 µL |
| Sample/ Standard/ Cal   | 1       | 10 μL   |

- -Mix and incubate for 30 seconds at 37 °C and Read Absorbance
- After exactly further 60 seconds read Absorbance (Abs2).
- Calculate ΔAbs (Abs2 Abs1).

# **REAGENT COMPOSITION**

absorbance is measured at 340 nm.

R1: Enzyme Solution

**TEST PRINCIPLE** 

TRIS Buffer, pH 7.80 120 mmol/L 2-Oxoglutarate 7 mmol/l ADP 0.6 mmol/L > 6 KU/I GLDH (Glutamate dehydrogenase) > 1 KU/I

**R2: Substrate Solution** 

NADH 0.25 mmol/L

Standard

Urea value on label

#### CALCULATION

#### Serum/ Plasma:

ΔAbs Sample Urea Concentration= x Std/ Cal. ΔAbs Std/Cal

#### **Urine:**

Calculate as for the serum and multiply the result by the initial sample dilution.

#### Notes:

- If results are to be expressed as SI units apply:

 $mg/dL \times 0.1665 = mmol/L$ 

- To convert urea mass units to those of urea nitrogen apply:

 $mg/dL \times 0.467 = mg/dL BUN$ 

#### STORAGE, PREPARATION AND SHELFLIFE

Liquid and ready to use reagents, stable until the expiry date shown, if stored as indicated on the label and avoid contamination, evaporation and prolonged exposure to direct light. Do not freeze the reagents. Discard the reagent if signs of deterioration appear, such as the presence of particles and turbidity or failure to recover the values of certified control sera or Blank Absorbance of Working Reagent at 340 nm < 1.000. After opening the bottles, it is advisable to withdraw the necessary volume, to immediately close the bottles and store them in the fridge to avoid contamination, degradation from direct light and evaporation.

### QUALITY CONTROL

Normal and abnormal control sera of known concentration should be analyzed routinely with each group of unknown samples.

### **EXPECTED VALUES**

Serum/plasma:

- Children (1 19 years): 11 45 mg/dL.
- Adults: 15 - 55 mg/dL.

#### Urine:

Adults: 26-43 g/24h

CC-JO-URE.UV-01/ REVISION A /DATE: 23/07/2025 Page | 1 Each laboratory should establish a range of expected values based on its patient population and, if necessary, determine its own reference interval. For diagnostic purposes, results should always be assessed together with the patient's medical history, clinical examination and other results.

#### **PERFORMANCE**

#### **PRECISION:**

Low Level: Samples = 20; Average = 29.8; S.D. = 0.61; CV = 2.05%. High Level: Samples = 20; Average = 117; S.D. = 1.48; CV = 1.27%.

#### **ACCURACY:**

A comparison between this method (x) and a certified method of trade (y) gave the following correlation:

$$y=0.971 x + 1.49 r = 0.992$$

**SENSITIVITY:** 2.00 mg/dL. **LINEARITY:** 300 mg/dL.

#### **PRECAUTIONS**

In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. After contact with skin, wash immediately with plenty of water. Wear suitable protective clothing, gloves and eye/face protection.

#### **INTERFERENCES**

No interference was observed by Bilirubin up to 20 mg/dL, Hemoglobin up to 500 mg/dL and lipemia up to 1000 mg/dL Triglycerides. Ammonium ions interfere, do not use ammonium heparin as anticoagulant to collect plasma.

#### **LITERATURE**

- Falke, H.N. Schubert, G.E.Klin.Wschr.42 (1965).
- Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B Saunders Company; 1999. p. 1838.
- Talke H, Schubert GE. Enzymatic determination of urea in blood and serum with the optical test according to Warburg. Klin Wschr 1965;43:174-5.
- Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th ed.
  Volume 1 and 2. Washington, DC: The American Association for Clinical Chemistry Press 2000.
- Bakker AJ, Mücke M. Gammopathy interference in clinical chemistry assays: mechanisms, detection and prevention. ClinChemLabMed 2007; 45(9): 1240-1243.

#### **USED SYMBOLS**

| IVD         | In Vitro Diagnostic Medical Device        |
|-------------|-------------------------------------------|
| •••         | Manufacturer                              |
| M           | Date of Manufacture                       |
| REF         | Catalogue Number                          |
| LOT         | Batch Code                                |
| $\square$   | Use by YYYY-MM (MM = end of month)        |
| []i         | Operator's Manual; Operating Instructions |
| 类           | Keep away from Sunlight                   |
| *           | Keep away from Rain                       |
| *           | Temperature Limit                         |
| $\triangle$ | Caution                                   |
|             | Do not use if Package is Damaged          |
| <b>②</b>    | Do Not Re-Use                             |
| Σ           | Contains Sufficient for <n> Tests</n>     |
|             |                                           |

CC-JO-URE.UV-01/ REVISION A /DATE: 23/07/2025 Page | 2